Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing

نویسندگان

  • Seong-Joong Kahng
  • Jong-Hoon Kim
  • Jae-Hyun Chung
چکیده

Nanostructured tip-shaped biosensors have drawn attention for biomolecule detection as they are promising for highly sensitive and specific detection of a target analyte. Using a nanostructured tip, the sensitivity is increased to identify individual molecules because of the high aspect ratio structure. Various detection methods, such as electrochemistry, fluorescence microcopy, and Raman spectroscopy, have been attempted to enhance the sensitivity and the specificity. Due to the confined path of electrons, electrochemical measurement using a nanotip enables the detection of single molecules. When an electric field is combined with capillary action and fluid flow, target molecules can be effectively concentrated onto a nanotip surface for detection. To enhance the concentration efficacy, a dendritic nanotip rather than a single tip could be used to detect target analytes, such as nanoparticles, cells, and DNA. However, reproducible fabrication with relation to specific detection remains a challenge due to the instability of a manufacturing method, resulting in inconsistent shape. In this paper, nanostructured biosensors are reviewed with our experimental results using dendritic nanotips for sequence specific detection of DNA. By the aid of the Six Sigma approach, the fabrication yield of dendritic nanotips increases from 20.0% to 86.6%. Using the nanotips, DNA is concentrated and detected in a sequence specific way with the detection limit equivalent to 1000 CFU/mL. The pros and cons of a nanotip biosensor are evaluated in conjunction with future prospects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Six-sigma application in tire-manufacturing company: a case study

Globalization, advancement of technologies, and increment in the demand of the customer change the way of doing business in the companies. To overcome these barriers, the six-sigma define–measure–analyze–improve–control (DMAIC) method is most popular and useful. This method helps to trim down the wastes and generating the potential ways of improvement in the process as well as service industrie...

متن کامل

Efficacy of fuzzy MADM approach in Six Sigma analysis phase in automotive sector

Six Sigma is a strategy for achieving process improvement and operational excellence within an organization. Decisions on critical parameter selection in analysis phase are always very crucial; it plays a primary role in successful execution of Six Sigma project and for productivity improvement in manufacturing environment and involves the imprecise, vague and uncertain information. Using a cas...

متن کامل

Application of Analytic Network Process in Selection of Six-Sigma Projects

This research aims at presenting a fuzzy model to evaluate and select Six-Sigma projects.  For this purpose, a model of fuzzy analytic network process (ANP) was designed to consider the relation and mutual impact among the factors. In order to evaluate the projects, nine sub-criteria were considered which were classified into three categories of business, finance and procedural ones. Also to co...

متن کامل

A New Fuzzy Method for Assessing Six Sigma Measures

Six-Sigma has some measures which measure performance characteristics related to a process. In most of the traditional methods, exact estimation is used to assess these measures and to utilize them in practice. In this paper, to estimate some of these measures, including Defects per Million Opportunities (DPMO), Defects per Opportunity (DPO), Defects per unit (DPU) and Yield, a new algorithm ba...

متن کامل

Applying Six Sigma Methodology Based On “DMAIC” Tools to Reduce Production Defects in Textile Manufacturing

-Six Sigma is a systematic methodology for continuous process quality improvement and for achieving operational excellence. Six Sigma methodology is designed to provide for the application of statistical tools in the context of a process improvement structure summarized by the acronym DMAIC– Define, Measure, Analyze, Improve, and Control. The DMAIC model provides a framework to identify and eli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016